
 Sequential Logical Systems

 4-1

4. Sequential Logical Units

4.1 Architecture of PLC program

A PLC program can be created in many ways. A standard approach in PLC program writing is based on
designing of logic (sequentially combinatorial) or translating relay logic into instructions of PLC836. Language
For every relay its own inner bit cell is declared. Writing into this cell is controlled by instructions Set, hold and
clear condition. Writing into the cell is in program at one place.

Example:
A standard approach to PLC program design.

 LDR NASTAV1 ;set condition is logical OR of
 LO NASTAV2 ;bits NASTAV1 NASTAV2
 LO BUNKA ;hold condition
 LA -NULUJ ;bit NULUJ clears flip flop
 WR BUNKA ;bit memory variable

A modern approach to PLC program design is based on description of each process via flow-charts which create

NASTAV1 NASTAV2 BUNKA

hold condition
set condition

NULUJ clear condition

BUNKA

PLC

 4-2

Sequential Logical Units (mechanism).
The Sequential Logical Unit (next only MECHANISM) is a program part that consists of actions and states.
Action means setting of appropriate bits which activate each part of mechanism for example switching on a
hydraulic ,switching off ventilator’s contactors e.g. A state means checking of requested input condition of the
mechanism. For example „ wait until contactor of hydraulic is switched on“. The mechanism can be described by
flow chart or state diagrams.

Mechanism is activated by an activating variable (NAZEV). It is a bit variable that is declared automatically
during mechanism’s writing. This variable can be set , reset or tested in an interface program and thus a run
control of mechanism is provided. The mechanism is activated by setting of the activating variable and after
execution of mechanism function is this variable automatically cleared.

PLC program can content a great number of mechanisms each for particular machine function. (Spindle start,
spindle reverse , spindle stop, clamp and releasing of axis, oriented stop, arm moving, start and stop of cooling,
steps for tool changing, tool search, arrangement of revolution sequences e.g.). Any number of mechanism can
be activated in the same time. The mechanisms run simultaneously and independently.

Using mechanisms simplifies PLC program design makes it more transparent. The PLC program is then more
structured . A structuralization is given via describing of all machine processes by mechanisms and thus a
program kernel is not strained by their particular problematic. The program kernel only activates appropriate
process (mechanism) and tests its proper operation including error reporting. The mechanisms consist of actions
and states. For each state only necessary condition for going to next state are tested.
In every time is possible to trace run of each mechanism: That means which mechanism is activated and its state.
It simplifies program debugging and troubleshooting because every mechanism’s state is given by so called
continuing condition (condition analysis) . It is useful to trace this continuing conditions when mechanism
stops. A big advantage of mechanisms is a possibility of time restriction of condition testing (time out) and thus
to avoid mechanism freezing. The mechanism ends abnormally (with an error). In error description on the
display can be in detailed text form expressed a continuing condition including number of inputs which given
condition contents. This simplifies maintenance and troubleshooting works.

Except condition analysis is possible to perform analysis of mechanism timing. For instance how long and in
which states mechanism stayed (time analysis).

MECH1 MECH2 MECH3

state
 1

state
2

state
 n

act.1

act.2

act.n

end

state
1

state
 2

state
 n

act. 1

act. 2

act.n

end

state
 1

state
 2

state
 n

act. 1

act. 2

act. n

end

state

state

state

act. = activation MECH2

act. = activation MECH3and MECH1

Writing of mechanisms as
parallel processes

A basic architecture of PLC program
with activation of particular processes
}mechanisms]

act. = activation MECH1

state = wait for MECH1

state = wait for MECH2

state = wait for MECH1 and
 MECH3

 Sequential Logical Systems

 4-3

4.2 Sequential Logical Unit Instructions

 MECH_BEGIN This instruction must be at the mechanism start. A variable "mech" is a name of mechanism
and concurrently a name of its activating bit variable. MECH_END instruction must be at mechanism’s end.
Variable "mech" has the same meaning e.g. is identical to name in MECH_BEGIN.

MECH_INIT This instruction pushes mechanism to its steady state. It is used during interface initialization or
during error treatment. This instruction must be used before first mechanism run and hence is recommended to
put this instruction to initialization module of an interface (see next). Variable "mech" is identical as in
 MECH_BEGIN. See "Common Rules" (next).

instruction MECH_BEGIN
 MECH_END
 MECH_INIT

operation MECH_BEGIN beginning of logical system
 MECH_END end of logical system
 MECH_INIT initialization of logical system

syntax MECH_BEGIN mech
 MECH_END mech
 MECH_INIT mech

instruction EX
 EX0
 EX1
 BEX

operation EX abortion for one interface cycle
 EX0 abortion if RLO = 0
 EX1 abortion if RLO = 1
 BEX begin of condition

PLC

 4-4

The instructions for state definition EX, EX0, EX1 abort run of Sequential Logical Unit until dedicated
condition is true. These instructions can be used inside of logical systems only. These abortions are called
mechanism states.

The instruction EX causes unconditional abortion of sequence execution for one interface cycle.

The instruction BEX is similar to instruction EX, but do not cause sequence abortion. This instruction is used at
the beginning of logical condition before instructions EX0, EX1, TEX0 a TEX1. It is recommended to use this
instruction in time consuming processes when a lose of one interface cycle could be fatal.

The Instruction EX0, resp. EX1 abort run of Sequential Logical Unit when RLO=0, resp. RLO=1. Before
instructions EX0 and EX1 can be logical condition for continuing in current state. For given state in every cycle
conditions written between one before last and last instruction EX are evalua ted.

Actually instructions EX0 a EX1 do not wait on given place but jump to mechanism end.. During next
mechanism execution jump from beginning of mechanism to one before last instruction EX and again evaluation
of conditions for instruction EX0 or EX1 takes place. See Chapter " Common Rules for Mechanism" (next).

The instructions EX, EX0, EX1, TEX0, TEX1 a BEX are the end instructions for logical expressions. The
Instructions do not preserve registers RLO and DR .

 Sequential Logical Systems

 4-5

The instruction TEX0, resp. TEX1 aborts sequence execution of mechanism when RLO=0, resp. RLO=1, but
maximally for preset time "time" (BYTE, WORD, constant). If a logical condition for continuing , that is written
before instructions TEX0 a TEX1, is not true for preset time the program continues from label which is given in
parameter "error".

Parameter "counter" can be of type BYTE or WORD. For systems type CNC8x9 – DUAL starting with version
6.028 is a first parameter for "counter" optional. In this case a variable in a local data is automatically declared.
Instead of 1st parameter is used character ”dash” or “NIL”.

 Instructions mentioned above belong to “strong” instructions used in mechanisms, because they give us a
possibility of error treatment and thus to exclude mechanism freezing . In a comment of possible error can be
detailed description of continuing condition for a given state and thus perform machine diagnostic .

For every state in each cycle conditions written in program part between two last reached instruction type EX are
evaluated. This instruction has three obligatory parameters. Designation of time element "counter", requested
time out "time" and label "error", from which program continues , when condition is not true within time out.
"time" can be either direct time value or an address of variable.. see "Common Rules" (next).

Forth optional parameter "error" can be a number (mostly an error number), which remains in data DR register
when jump to label "error" occurs. Thus is possible from various instructions TEX0 and TEX1 jumped to one
location "error" with common error stage treatment.

Instructions TEX0 a TEX1 are end instructions for logical expressions. Instructions do not preserve RLO and
DR register, except jump to label "error", when the fourth parameter "error" is used.

The possibility of redefining operands "counter" and "time" is described in chapter "....... Redefining of variable
type relates to both operands "counter" and "time", and thus is not possible to declare operand “time” as a
constant.

instructions TEX0
 TEX1

operation TEX0 abortion execution when RLO = 0 with Time Out
 TEX1 abortion execution when RLO = 1 with Time Out

syntax TEX0(TEX1) counter, time, error
 TEX0(TEX1) counter, time, error [, chyba]
 TEX0(TEX1) [TYPE.]counter, time, error [, chyba]
 TEX0(TEX1) TYPE. (counter+n), (time+m), error [, chyba]
 TEX0(TEX1) - , time, error [, chyba]
 TYPE = BYTE. WORD.

PLC

 4-6

The instruction TIM aborts execution of Sequential Logical Unit for a dedicated time. This instruction has a two
parameters. Designating of time element "citac" and requested time delay "doba". "Doba" can be either constant
or a variable’s address. Both parameters can be of type BYTE or WORD. Instruction TIM works similarly
instruction EX and can be used inside mechanism only.

For systems type CNC8x9 – DUAL starting with version 6.028 is the first parameter optional . In this case a
variable in a local data is automatically declared . Instead of 1st parameter is used character ”dash” or “NIL”.

The possibility of redefining operands "citac" and "doba" is described in chapter "....... Redefining of variable
type relates to both operands "citac" and "doba", and thus is not possible to declare operand “doba” as a constant.

4.3 Common Rules for Mechanism

Instruction EX, EX0, EX1, TEX0, TEX1 and TIM can be used only inside of sequential logic systems
circumscribed by instructions MECH_BEGIN a MECH_END. These instruction share common name:
instructions type EX.

Every mechanism must be initialized by instruction MECH_INIT in module PIS_INIT or in PIS_CLEAR
(see chapter "Architecture of PLC program").

A module of introductory and closing functions is also a sequential logical module thus is possible to use in it all
instructions type EX separately as well.. Using these instructions in those modules cause an abortion of
introductory or closing functions until a tested condition comes true (see example).

Instructions EX0, EX1, TEX0, TEX1 and TIM abort sequence execution of the mechanism for time when
appropriate condition is true (if RLO=0, or RLO=1) or for preset time (instruction TIM). Before instructions
EX0, EX1, TEX0 and TEX1 can be written a logical condition for continuing in given state. For given state in
ech cycle evaluation of conditions written between two last reached instructions type EX is provided.
Actually instructions type EX do not wait on given place but jump to mechanism end.. During next mechanism
execution jump from beginning of mechanism to one before last instruction EX and again evaluation of
conditions after last instruction type EX takes place.

instruction TIM

operation TIM time delay

syntax TIM citac, doba
 TIM [TYPE.]citac, doba
 TIM TYPE.(citac+n), (doba+m)
 TIM - , doba
 TYPE = BYTE. WORD.

Tracing of Mechanism’s Program in a given State

 Sequential Logical Systems

 4-7

The mechanisms can be activated and deactivated also in other mechanisms. The mechanism deactivation is
provided by instruction MECH_INIT, which clears a bit control variable of mechanism and set an address for
continuing to beginning. Deactivation of mechanisms is advantageous in the case of contradictory mechanisms
when mechanism with higher priority deactivates from the safety reasons its contradictory mechanisms. For
instance a mechanism for spindle stop deactivates possibly developed mechanism for spindle start.

The mechanism may be looped and thus is advantageous to use also permanently looped mechanisms. These
mechanisms have features of sequential drivers. The permanently looped mechanism must have in its body at
least one instruction type EX !

By definition of mechanism "mech" is provided an automatic declaration of bit variable with a name "mech",
declaration of memory cell type WORD for continuing address of mechanism and a memory cell type WORD
with a name "mech_LINE" for actual program line in which is mechanism located. During compilation of PLC
program by compiler TECHNOL (see next) is created an program listing with extension ".LS1" where program
rows are numbered. In every state definition via instructions EX, EX0, EX1, TEX0, TEX1 and TIM is for
inspection purposes a number of row written to memory cell "mech_LINE". It helps easy tracing of current
mechanism state. If mechanism is not activated a memory cell "mech_LINE" is cleared.

Example:
Activating of mechanism named "CW" in introductory functions and waiting for mechanism execution:

 FL 1,CW ; Set activation variable.
 EX
 LDR CW ; Checking mechanism execution.
 EX1 ;Wait until CW = 1

MECH_BEGIN MCH ;begin of mechanism

 EX0 ;last but one instruction type EX
 FL 1,VYST1 ;last executed action AKCE

 LDR VST1 ;last state: log. and
 LA VST2 ;wait until VST1*VST2=1
 TEX1 CITAC1,CAS_ERR,ERR ;last executed instruction type EX

MECH_END MCH ;end of mechanism

jump

part of program
which is
actually
executed,
který se
jump

PLC

 4-8

Example:
Activating of mechanism named "CW" in introductory functions and waiting 10 sec for mechanism execution. If
not executed go to error treatment ERR1:

 EQUI D500,500
 EQUI CHYBA1,12H ;ERROR 4.12

 FL 1,CW ;Set activation variable.
 EX
 LDR CW ;Checking mechanism execution.
 TEX1 CITAC,D500,ERR1 ;Wait when CW = 1, with time out 10 sec
 else go to ERR1

ERR1: LOD CHYBA1 ; Error treatment. Mechanism time out overflow
 STO BZH11 ;

Example:

NAZEV = 1

KONTROLA
STAVU 1

ZAČÁTEK

KONTROLA
STAVU 2

AKCE 2

AKCE 1

KONEC

NAZEV ← 0

no
ne

yes

False
yes

False

MECH_BEGIN NAZEV

FL 1,HYDRAULIKA

LDR KONTAKT 1
LA KONTAKT 2
EX0

FL 0,POHON

LDR KONTAKT 3
EX1

MECH_END NAZEV

 Sequential Logical Systems

 4-9

Write mechanism for spindle reversation from CW to CCW. Name mechanism CWCCW.

 MECH_BEGIN CWCCW ;beginning of mechanism.
 FL 0,SMP ;clear contactor motor positive.
 LDR KSMP
 EX1 ;Wait when contact motor positive is 1.
 TIM CAS1,D02 ;Delay 0,2 sec.
 FL 1,SMN ;switch on contac. motor negative.
 LDR KSMN
 EX0 ;wait when contact motor negative is 0.
 MECH_END CWCCW ;end.

Notice:
in a actual case is better in mechanism CWCCW instead of instructions EX1 a EX0 use instructions TEX1 a
TEX0, as is shown in following example.

Example:
Write mechanism for reversation of spindle revolution from CW to CCW. name mechanism CWCCW. If a
contact of motor -positive contactor KSMP is not released in 1sec. go to error 4.04. If contact of motor-negative
contactor KSMN is not switched on within 1. sec switch off motor contactor and go to error 4.05.

 EQUI D1,50 ;Time 1 sec.
 EQUI D02,10 ;time 0,2 sec.

MECH_BEGIN CWCCW ;Beginning.
 FL 0,SMP ;switch off cont. motor-positive.
 LDR KSMP
 TEX1 CITAC1,D1,CW_ERR,04 ;Wait when cont. motor- positive is 1.
 TIM CITAC,D02 ;Delay 0,2 sec.
 FL 1,SMN ;switch on cont. motor-negative.
 LDR KSMN
 TEX0 CITAC,D1,CW_ERR,05 ;wait when cont. motor-negative is 0 with.

 ;Time Out 1 sec
 JUM CW_END ;Jump to end.
 ;Error treatment.
CW_ERR: FL 0,SMN ;Switch off motor contactor.
 STO BZH11 ;Set error 4.05, 4.04
CW_END:
MECH_END CWCCW ;End.

Example:
Ways of writing for instructions TEX0,TEX1 and TIM with a type redefining:

CITAC: DS 100 ;array of counters
REKONFIG: DS 100 ;array of redefinable variables

 TEX0 WORD.(CITAC+30),(REKONFIG+14),ERROR
 TEX1 BYTE.(CITAC+13),(REKONFIG+21),ERROR,23h
 TIM WORD.(CITAC+20),(REKONFIG+10)

PLC

 4-10

